

Product information

Background | ELISA assay utilizes the principle of competitive binding to measure the concentration of hormone in plant extracts. The trans-zeatin riboside specific antibodies are precoated to the surface of the reaction wells. The plant extract sample, containing an unknown amount of hormone, is mixed in the reaction well with a known amount of a tracer to react with a limited number of antibodies in the reaction wells. During incubation the hormone in the sample competes with the tracer for the antibody binding sites. Unbound hormone, tracer and plant extract are washed out of the reaction wells. Following substrate addition which reacts with a tracer bound to the antibody and produces a yellow-colored product. The absorbance of the sample is converted to concentration of hormone by means of a standard curve which is produced by simultaneously treating standards along with the samples.

Important note | Do not use reagents after expiry date. All reagents must be stored according to this instruction. Avoid repeated freeze-thawing. Pipetting of all samples and tracer is critical to the accuracy and reproducibility of the assay. It is important to include a standard curve together with each run in cases when all strips are not processed at the same time and all plates and buffers are equilibrated to 25°C.

Test is valid if Bo reads greater than 0.700 O.D. Increase substrate incubation time until the desired O.D. is recommended (but do not exceed an additional 60 min).

Pre-purification (removal of chlorophyll and lipids) is highly recommended for plant samples but there is no need in the case of certain samples like algae and bacteria. Analyses of several sample dilutions are recommended.

This Trans-zeatin riboside ELISA quantitation kit contains the following reagents:

Reaction wells: antibody coated and blocked (16 assays, 2 strips with 8 wells)

Tracer: 3-5 µl (reagent 2)

Tracer diluent: 5x concentrated stock; 250 mM TBS Tris, 10 mM NaCl, 1 mM MgCl2, pH 7.5 stock + 0.02

% NaN3 (reagent 3)

Reaction and wash solution: 10x TBS stock+0.02 % NaN3 (reagent 4)

Stopping reagent: 2x 5 N KOH stock (reagent 5)

Substrate diluent: 10x 500 mM NaHCO3 stock, pH 9.6+0 0.02 % NaN3 (reagent 6)

Substrate: 100 mg of p-nitrophenylphosphate (reagent 7)

Standards: 300 µl of each: 15.6 pmol, 488fmol, 15.2 fmol, concentration/50 µl (reagent 8)

This kit is for research purpose only.

Storage:

Reaction wells: Very sensitive and must be stored at -20°C (stable for more than 6 months)

Tracer: Store at -20°C (stable for more than 6 months). Diluted tracer is stable for 7 days at +4°C.

Standards: Store at -20°C (stable for more than 6 months); stable for 2 days at +4°C. Substrate: Can be stored at +4°C or -20°C. Working solution is stable for 5 hours at +4°C

Assay development time: 4-5 hours Sensitivity: around 50 fmol in 50 μ l

Expiry date: Kit should not be used beyond expiry date.

Manual

PLEASE read CAREFULLY the whole manual before proceeding with your experiment

1. Preparation of diluted Tracer Solution (reagent 9)

Prepare auxin Tracer Diluent (1 ml from concentrated Tracer Diluent stock (**reagent 3**) + 4 ml deionized water, confirm pH to be 7.5) then add 2-5 μ l of a Tracer Stock Solution (**reagent 2**; check label). Diluted tracer can be stored at 2-4° C for up to 2 days. Use always pre-incubated (25°C, min. 30 min) tracer solution for ELISAs.

2. Preparation of Standards (reagent 8)

Slowly thaw the standards **(reagent 8)** and leave them to shake for 1 min. Pre-incubation at 25°C for at least min. 30 min is necessary.

3. Preparation of Reaction Solution and Wash Solutions

For coupling reaction prepare Reaction Solution (**reagent 10**) by using 1 ml from concentrated stock (**reagent 4**) added to 4 ml of deionized water, pH 7.5, per each plate.

To prepare Washing Solution (reagent 11) use 1 ml from concentrated stock (reagent 4) added to 49 ml of deionized water.

4. Plate preparation

Remove the plate or chosen strips (1) from freezer, add 150 µl of diluted Reaction Solution (reagent 10) to each well for 60 minutes to equilibrate at room temperature (25°C as recommended). After 1 h incubation discard all solutions from the plate and remove excess of Reaction Solution by patching strips dry on paper towels (wall).

For blank wells add 150 µl diluted Reaction Solution only (reagent 10).

Add 50 μ l of chosen standards (**reagent 8**) in duplicates. Minimum five standard points in duplicates are recommended for the standard curve. Leave two wells without any standard. They will serve as a positive control, called **Bo** (containing 100 μ l of diluted Reaction Solution (**reagent 10**) + 50 μ l of diluted Tracer Solution, prepared in point 1, **reagent 9**).

Add 50 μ l of your samples dissolved in Reaction Solution (**reagent 10**) to chosen wells and then add 50 μ l of diluted auxin tracer solution to all wells except to blank wells (**reagent 9**). Only Blank wells are left free of Tracer Solution and contain 150 μ l diluted Reaction Solution only (**reagent 10**). See example of layout of ELISA plate on the next page.

- 5. Mix thoroughly on a shaker.
- 6. Cover the wells with plate sealer.
- 7. Incubate sealed wells at room temperature (25°C as recommended) for 1 hour. No shaking is necessary.
- 8. After 1 h incubation discard all solutions from the plate.
- 9. Wash wells by adding 200 µl of diluted Wash Solution (**reagent 11**) to each well. Decant wash mixture from the wells. Repeat this step 3 more times for a total of 4 washes and remove excess of Wash Solution by patching strips dry on paper towels (wall).

During the 1 hour incubation mentioned above, prepare substrate solution (**reagent 7**). For one plate 20 mg of substrate needs to be dissolved in 20 ml diluted Substrate Diluent (**reagent 6**) using 2 ml from concentrated stock and adding to 18 ml of deionized water, pH 9.6. Recommended temperature of the Substrate Solution is 25°C.

Agrisera

- 10. Add 150 μ l of the Substrate Solution to all wells including blank, Bo, standards and samples. **Important:** Activity of a tracer can be decreased by leaving wells without solution for too long period of time.
- 11. Cover wells with plate sealer.
- 14. Incubate at 25°C for 60 minutes.
- 15. Remove plates from incubator and add 50 μl diluted Stopping Reagent (reagent 5) by using 3 ml from concentrated stock and adding it to 3 ml of deionized water, mixing well. Wait for 5 minutes.
- 16. Read colour absorbance at 405 nm against Blank wells.
- 17. Record the optical densities.

Example of layout of ELISA plate (each box represents 2 wells)

BLANK, 150 µl diluted Reaction Solution only (UB)

No standard, 100 µl diluted Reaction Solution + 50 µl diluted Tracer Solution (**Bo**)

15.6 pmol, 50 µl standard + 50 µl diluted Reaction Solution + 50 µl diluted Tracer Solution

488 fmol, 50 μl standard + 50 μl diluted Reaction Solution + 50 μl diluted Tracer Solution

15.2 fmol, 50 µl standard + 50 µl diluted Reaction Solution + 50 µl diluted Tracer Solution

50 μl sample + 50 μl diluted Reaction Solution + 50 μl diluted Tracer Solution

50 μl sample + 50 μl diluted Reaction Solution + 50 μl diluted Tracer Solution

50 μl sample + 50 μl diluted Reaction Solution + 50 μl diluted Tracer Solution

Calculations

- 1. Average the optical densities in duplicate standards or samples.
- 2. Calculate the % Binding of each standard point or sample by the following:

% Binding (B%) = Standard or Sample (O.D.)/ Bo O.D. \times 100

Bo = 100 μl Reaction Solution + 50 μl Tracer = 100% Binding

- 3. Plot the % Binding versus the log of total concentration (fmol or pmol in $50 \mu l$) of standards and draw the Best fit curve. Semi-log paper can be used for convenience.
- 4. The sample concentration is determined by extrapolation of the sample % Binding from the best-fit standard curve.

Note: Linear curve can be drawn using a log-logit function.